tool for observational studies. Outcomes of interest were amputation-free survival (AFS), major amputation and mortality after at least 12 months of follow-up. A random effects model was used for meta-analyses, if feasible.

Results: A total of 27 publications were included, consisting of twenty prospective and seven retrospective studies comprising 1876 patients. Most studies included patients with no-option CLTI. Overall study quality was moderate. The pooled mortality rate after 12 months of follow-up of 15 studies consisting of 1295 patients was 18% (95% CI 12 - 26%, I² = 89%). The major amputation rate from 15 studies comprising 1047 patients was 26% (95% CI 19 - 35%, I² = 81%) and the AFS rate of 10 studies with 860 patients included was 51% (35 - 67% I² = 94%). During the past 30 years, major amputation and AFS rates appear to have improved in conservatively treated CLTI patients.

Conclusion: Conservative treatment can be a feasible treatment option in CLTI patients without revascularization opportunities, or when patients are fragile and present with significant comorbidities.

Disclosure: Nothing to disclose

O-025 Natural History of Patients with Popliteal Artery Aneurysms — Untreated and Treated

Peripheral Arterial Disease

Iva Jergovic 1,2, Joy Roy 1,2, Rebecka Hultgren 1,2

1 Karolinska University Hospital, Department of Vascular Surgery, Stockholm, Sweden
2 Karolinska Institute, Stockholm Aneurysmal Research Group, STAR, MMK, Stockholm, Sweden

Introduction: The definition of a popliteal artery aneurysm (PAA) is not well established, the normal popliteal arterial diameter in a man is approximately 7 mm. There is limited knowledge about the natural history of PAA in patients. The
suggested thresholds in contemporary series for elective vascular surgery ranges from 20-30 mm. The aim was to investigate the natural history in persons with PAA regarding growth as well as treatment rates and outcome. **Methods:** A retrospective medical chart review was performed on all patients with a PAA at a single center 2009-2016, with a catchment population of 1.2 million inhabitants. PAA was defined as "small" (diameter 12-15 mm, or defined as PAA by vascular surgeon) or "large" (>16 mm). Comorbidity and outcome was analyzed on a patient-specific level, and the patients are classified according to their largest PAA diameter. Mean surveillance from diagnosis to follow-up or intervention was 4 years (range 1-10 years). **Results:** There were 174 patients (287 limbs) with a PAA diagnosis. 113 patients (65 %) had bilateral disease. Mean age was 72 years, 13 were women (8 %), most patients were current or former smokers (n=122, 70 %), 93 had abdominal aortic aneurysm (AAA) (53 %) and 92 (53 %) had lipid lowering treatment. (See Table). A larger proportion of patients with small PAA had concurrent PAA and (AAA) (73 % vs 49 %, p = 0.016). The proportion of small PAA was 30 % (86/287). The mean diameter at diagnosis for the 287 PAA was 21.6 mm. Growth rate was 0.38 mm/year in PAA <16 mm, and 2.59 mm/year in PAA >16 mm. During the study period, 57/174 patients (33 %) were left untreated, however continuously surveilled. 117 persons were treated (67 %), 34 bilaterally. Most PAAs were treated with elective repair (120/151, 79 %), of them 12 % were small (flowchart). Among the 21 % (31/151) of PAAs treated for acute limb ischemia, 10/31 (32 %) were small. Only 5 patients (3 %) presented with a PAA rupture. During the study period 54/174 (31 %) patients died. **Conclusion:** PAA is more uncommon than AAA in the population; however, with increased awareness and targeted screening in risk groups at a vascular department, more patients can be diagnosed and evaluated for elective treatment. The growth rate is, as expected higher in larger PAAs. A considerable number of patients with acute limb ischemia have small PAAs. More concise thresholds for definition, surveillance and treatment of patients with PAA is called for in order to optimize the care flow of PAA patients. **Disclosure:** Nothing to disclose

O-026 Missed Opportunities for Limb Salvage in Patient Undergoing a Major Amputation: A Cohort Study Using the Clinical Practice Research Datalink

Peripheral Arterial Disease

Andrew Nickinson 1, Briana Coles 2, Tanya Payne 1, Robert Davies 3, Kamlesh Khunti 2, Rob Sayers 1

1 University of Leicester, Cardiovascular Sciences, Leicester, United Kingdom
2 University of Leicester, Diabetes Research Centre, Leicester, United Kingdom
3 University Hospitals of Leicester, Leicester, United Kingdom

Introduction: Delays in the management of chronic limb threatening ischaemia (CLTI) are common and associated with poor limb-salvage outcomes. Currently little is known about whether opportunities for timely recognition in general practice exist and are potentially being missed. This study aims to identify general practice consultations and ‘cardiovascular’ (CV) assessments undergone by patients in the year prior to having a major lower limb amputation for CLTI, in order to evaluate for ‘missed opportunities’ for diagnosis.

Methods: A retrospective cohort study, utilising the Clinical Practice Research Datalink (CPRD) with linkage to Hospital Episode Statistics and Office for National Statistics data, was undertaken. Adult patients undergoing a major amputation between 1st January 2000-31st December 2016 (index date) were identified using OPCS-4 codes (X09.). ICD-10 and medcodes were used to exclude patients undergoing amputation for malignancy, trauma or acute ischaemia. Baseline characteristics, up to 1 year prior to index, were recorded. For each patient, the total number of general practice consultations in the year prior to index was recorded and the date of their latest consultation before their amputation identified. Furthermore, the date of their latest general practice CV assessment (defined as one of: CV or peripheral vasculature examination, lower limb doppler examination or diabetes consultation/check) prior to index was also recorded. Consultations/assessment within 7 days of index were excluded as they were likely pre-surgical. Subsequent all-cause and CV-related mortality (1 year) mortality was identified.

Results: Following exclusion, 3260 patients (mean age=69.8 years, male=63.9%) were included. 47.4% of the cohort were recorded as having diabetes. Prescription rates of secondary preventative medications were poor (antiplatelet=49.7%, lipid lowering agent=40.7%). The 1-year mortality rate was recorded as 34.3% (all-cause) and 14.4% (CV-related).

In the year prior to amputation, 1348 (41.3%) patients underwent ≥25 primary care consultations. The times of